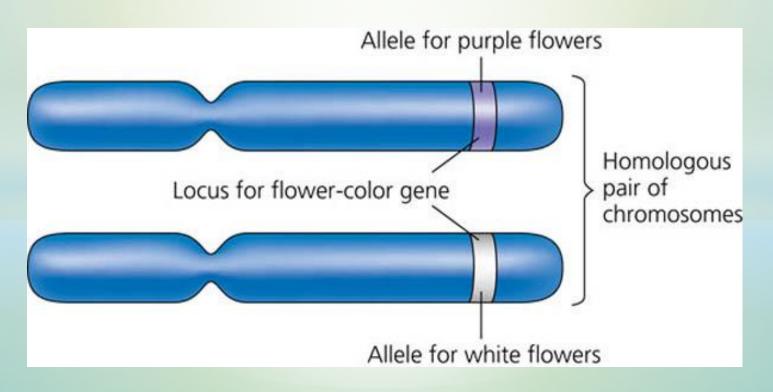
*Genetics

*Gregor Mendel


- *1st Person to predict how **traits** (characteristics that are inherited) would be transferred from one generation to the next.
- *Studied how heredity (passing on of characteristics from parent to offspring) using pea plants.
- *Pea plants have two distinct sex cells- ovule (female) and pollen grain (male)
- *Male and female gametes in the same flower; usually reproduce by self-pollination (male and female gametes are in the same plant)
- *Mendel used <u>cross-pollination</u> (from plant to another)
- *Studied one trait at a time (ONE variable)
- *Analyzed his data mathematically

*Monohybrid Crosses "one trait cross"

- *First Generation (F₁):
 - *Mendel crossed a tall pea plant with a short pea plant = P₁
 Generation (Parents)
 - *All resulting plants were tall (F₁ Generation)
- *Second Generation (F₂):
 - *Mendel allowed tall plants from F₁ generation to self pollinate
 - * 3/4 tall offspring
 - * 1/4 short offspring
 - * Short trait reappears
- *Mendel studied 7 traits (one at a time) and noticed in all crosses one trait disappears in the F_1 generation, only to reappear in the F_2 generation $\frac{1}{4}$ of the time.

*Rule of Unit Factors

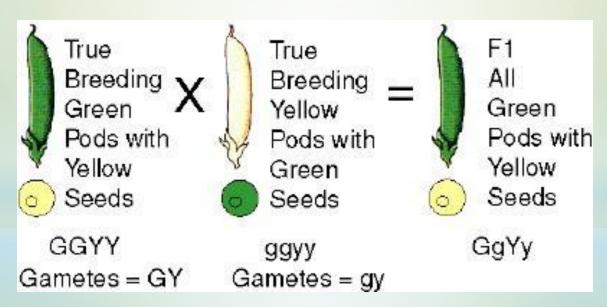
- *Each organism has two factors symbolized by letters.
- *Genes exist in alternative forms (alleles).
- *An organism's two alleles are located on different copies of a chromosome (one from mom and one from dad)

*Rule of Dominance

Hybrid: offspring of parents that have different forms of a trait

Dominant:

- * Traits that shows in a hybrid
- * Will be visible
- * Use uppercase letter (H)
- * Always written first


Recessive:

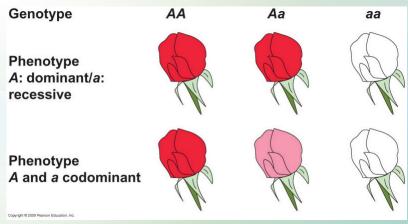
- * Trait that does not show in a hybrid
- * Gets covered up
- * Use lowercase letter (h)

Ex. Hair color→ Hh
Which one is dominant?
Recessive?

*Principle of Segregation

- *Mendel concluded that the 2 alleles for each trait must separate when gametes form
- *A parent passes on at random only one allele to each offspring

*Phenotype vs Genotype


Phenotype:

- * The form of a trait that is observed
- * The way an organism looks or behaves
- * Ex. Hair color, eye color, skin color

Genotype:

- * The gene combination an organism contains
- * Can't always know an organism's genotype by looking at it's phenotype.

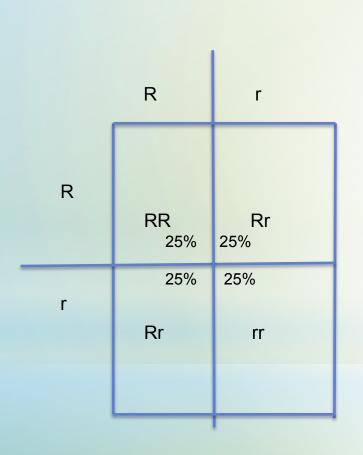
*Homozygous:

- *An organism is homozygous for a trait if its two alleles for the trait are the **same**
 - * Homozygous Dominant: HH
 - * Homozygous Recessive: hh

*Heterozygous:

- *An organism is heterozygous for a trait if its two alleles for the trait differ from each other
- * Hh

* Principle of Independent Assortment:


- *Genes for different traits are inherited independently of each other.
- *When a plant with the genotype RrYy produces gametes, the alleles R and r will separate from each other (principle of segregation) as well as the Rs from the Ys (independent assortment)

*Punnett Squares

- *Short hand way of finding the expected proportions of possible genotypes of offspring in a cross.
- *1 parent listed on the top of the square; the other parent is listed on the side of the square.
- *Each box is filled in with the gametes or letters listed above and below the square (offspring)
- *Then you can determine the phenotypes!
- *Five Steps to Punnett Squares:
 - 1. Key or Legend
 - 2. Cross of Parents
 - 3. Punnett- show work
 - 4. Phenotype
 - 5. Genotype

	Father's Gametes			
		D	d	
Mother's Gametes	d	Dd	dd	
	d	Dd	dd	

*Genotypic and Phenotypic Ratios


```
*Genotype Percentage -
  *25% Homozygous Dominant
  *50 % Heterozygous
  *25 % Homozygous Recessive
*Genotype Ratio
  *1:2:1
*Phenotype Percentage -
  *75% Red Flower
  *25% White Flower
*Phenotype Ratio
  *3:1
```

*Ratios in Large Populations

Data Table 2: Selfing Dominant F2's to produce F3 rows:

F2 type	Mixed rows	True breeding	ratio
Round seed	372	193	1.93 to 1
Yellow cotyledon	353	166	2.13 to 1
Gray seed coat	64	36	1.78 to 1
Inflated Pod	71	29	2.45 to 1
Green Pod	60	40	1.50 to 1
Axial flower	67	33	2.03 to 1
Tall plant	72	28	2.57 to 1

Average ratio to heterozygote F2 to homozygote F2 was 2.06 to 1